

Наркозный аппарат **Aeon8600A**

Надежный, качественный и продуманный сервис

Вентиляция для защиты легких

Защитная вентиляция легких является текущим стандартом медицинской помощи при искусственной вентиляции легких. Риск послеоперационных легочных осложнений (ППО) можно эффективно снизить с помощью стратегии защитной вентиляции легких.

Низкий дыхательный объем

Аппарат 8600A имеет минимальный дыхательный объем 10 мл в режиме регулировки объема, в дополнение к режимам вентиляции PCV-VG и BIVENT, помогая достичь точного низкого дыхательного объема, необходимого при защитной вентиляции легких.

Индивидуальный инструмент для титрования РЕЕР

Контроль индекса стресса (SI) помогает при индивидуальном титровании РЕЕР. Под руководством инструмента статической петли PV реализуются соответствующие настройки значения РЕЕР и дыхательного объема.

Типы воздействия

Два типа воздействия: ступенчатое РЕЕР или устойчивое надувание. Автоматически повторяющиеся задачи, используемые во время процедур вентиляции легких.

Современный дыхательный контур

Безопасное, стабильное и эффективное управление анестезией. Характерный дыхательный контур изготовлен из сплава, стойкого к коррозии и может выдерживать многократную стерилизацию при высокой температуре и высоком давлении.

Регулируемый угол, простота установки, множество удобных конструкций облегчают техническое обслуживание.

Встроенная система обогрева с лучшей теплопроводностью сплава помогает предотвратить образование конденсата и обеспечивает более комфортное самочувствие пациентов.

APL с быстрым сбросом давления, верхний предел давления точно регулируется, что позволяет избежать повторных операций и повысить эффективность анестезии

Дыхательный контур имеет функцию обхода СО2.

Режимы вентиляции на уровне ИВЛ аппарата Aeon8600A

ИВЛ Aeon8600A всегда будет вашим профессиональным охранником на всю жизнь, предлагая всестороннюю и точную респираторную помощь всем типам пациентов, от младенцев до взрослых, помогая клиницистам иметь больше решений для различных клинических ситуаций.

IPPV | PCV | PCV-VG SIMV-VC | SIMV-PC | SIMV-VG PS | CPAP | BIVENT | APRV

SIMV-VG

Гарантирует, что пациенты могут дышать спонтанно между принудительными вдохами с поддержкой давлением в качестве резерва. Он предлагает гибкие респираторные решения, когда анестезия переходит в разные фазы.

PCY-VG

Сочетает в себе преимущества VCV и PCV, обеспечивая лучшую оксигенацию при более низком пиковом давлении вдоха.

BIVENT / APRV

Дыхание с контролируемым давлением обеспечивается путем переключения между высоким и низким давлением в дыхательных путях в регулируемой временной последовательности. Спонтанное дыхание может поддерживаться давлением при высоком и низком уровнях давления.

Расширенный контроль и клинические инструменты

В дополнение к традиционным параметрам контроля предусмотрены специальные параметры набдлюдения, такие как рабочее давление, которые помогают врачам регулировать параметры вентиляции.

Петли спирометрии можно сохранять для использования в будущем, что позволяет персоналу лучше понимать изменения реакции пациента на терапию.

Обеспечивает несколько режимов искусственного кровообращения (СВР), чтобы помочь в проведении операции сердечно-легочного шунтирования.

Непрерывная информация о тенденциях вместе с дискретными по времени событиями сохраняется и отображается в таблице или диаграмме.

Обеспечивает расчеты расхода медицинских газов: включая O_2 , N_2O и агент. И предоставить расчеты производства Co_2 .

Поддержка протокола передачи данных международного стандарта для подключения к интернет-центру больниц.

Технические характеристики

Базовый блок

Габаритные размеры (ВхШхГ)

1420Х760Х760 мм Тележки (с дыхательным контуром)

Вес и нагрузка

Тележка (без испарителя и резервного баллона) 135 кг 25 KF

Нагрузка на верхнюю полку

Блокировка ролика Типы торможения

Резервное питание и батарея

Входная мощность

Розетки

Аккумуляторы и время работы при полной зарядке

Требования к окружающей среде Температура эксплуатации

Влажность при эксплуатации Температура хранения Влажность хранения

Индивидуальная блокировка передних роликов

100~240 В переменного тока, 50/60 Гц

4 розетки сзади, 1.5А индивидуальная 24 В постоянного тока, 4,0 АН, минимум 120 минут

10~40°C(50~104°F) <95%(без конленсации) 20~60°C(-4~131°F) ≤95%(без конденсации)

0₂, ВОЗДУХ, АІР:280~600 кПа

Расходомер с электронным дисплеем

Севофлуран, Галотан, Энфлуран, Изофлуран

Selectatec® с блокировкой, дополнительный стояночный держатель для испарителя

Спонтанное дыхание (СП) -70 см вод. ст.

Автоклавируемый (кроме ячейки O₂ и манометра дыхательных путей)

О₂, №О: О-10 л/мин; ВОЗДУХ: -12 л/мин

Опция: O₂, N₂O, ВОЗДУХ

Pour-Fill.Key-Fill, Quik-Fil

1.5 л для одной канистры

25~75 л/мин

Опция

Опция

МОДУЛЬ ПОДАЧИ АНЕСТЕЗИОННОГО ГАЗА

Газоснабжение Вилки цилиндров

Индикатор расхода свежего газа

Диапазон индикаторов расхода свежего газа

Промывка кислорода

. Дополнительный общий газоотвод (ACGO) Система удаления анестезирующих газов (AGSS)

Испаритель

Агент

Режим установки

Тип заполнения Дыхательная система

Объем поглотителя Со-

Материал

Система обогрева Перепускание СО2

Диапазон АПЛ

Опция ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ ВЕНТИЛЯТОРА

32-40°C

Вентилятор

Режимы вентиляции - стандартные

Режимы вентиляции - опции

С пневматическим приводом, с электронным управлением

Ручной/Спонтанный . Регулятор объёма(ТРРУ)

Контроль давления (PCV)

Гарантированный объем вентиляции с контролируемым давлением (PCV-VG)

Синхронизированная перемежающаяся принулительная вентиляция в

объеме (SIMV-VC)

Синхронизированная перемежающаяся принудительная вентиляция легких под давлением (SIMV-PC)

Синхронизированная перемежающаяся принудительная вентиляция легких при

PCV-VG (SIMV-VG) Поллержка лавлением (PS) / Постоянное положительное лавление в лыхательных

путях (СРАР)

Двухуровневая вентиляция с положительным давлением в дыхательных путях (BIVENT)

Вентиляция со сбросом давления в дыхательныхпутях (APRV)

Диапазоны управляющих входов

Частота дыхания (Freq)

Положительное давление в конце выдоха (РЕЕР) Соотношение вдох/выдох (I:E)

Дыхательный объем (Вт)

Пауза вдоха Время вдоха

Давление вдоха (Ртаксет)

Уровень поддержки давлением (AP) Предельное давление (Рмах)

Компенсация

0~2 c Время наклона вдоха (Tslope)

Контроль вентилятора и сигнализация

Контроль

Хранение данных

Экран управления

Графический дисплей

Система тревоги

Тревожная тишина Регистрация сигналов тревоги 2~100 ударов в минуту ВЫКЛ.3~50 см вод. ст.

4:1~1:8

20~1500 мл OFF,5%~60%

0.2~5.0 с 5~70 см вод. ст.

3~60 см вод. ст.

10~100 см вод. ст

0.5~15 л/мин/-20~-1 см вод. ст.

Соответствие и компенсация утечки, компенсация свежего газа, компенсация высоты

Непрерывный контроль концентрации кислорода на вдохе, частоты дыхания, дыхательного объема, минутного объема, пикового давления в дыхательных путях, РЕЕР, среднего давления или давления плато, соотношения вдох; выдох, сопротивления, комплайнса. Опция: рабочее давление, индекс стресса, концентрация СО₂, парамагнитный анализатор кислорода, концентрация анестезирующего

газа с МАС

Максимум 72 часа таблицы данных тренда, 72 часа графика тренда

Потребление O_2 , N_2O и агента. Расчеты производства CO_2 . Требуют соответствую-

шего контроля газа

12.1-дюймовый цветной сенсорный ТҒТ-экран

Кривые P-t, F-t, V-t, CO₂-t (опция), P-V Loop, P-F Loop Верхний/нижний предел MV, верхний/нижний предел FiO₂, верхний/нижний предел

Раw, сбой питания, высокая частота, отрицательное давление, постоянное давле-

ние в дыхательных путях, сигнализация апноэ и т. д.

≤120 секунд

500

Комплексная сервисная поддержка

доставка

